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Abstract

Fluid flow in dendritic structures is approached based on hydrodynamics and a geometric description of the network.

The hydrodynamic performance of the network, composed of series of rough ducts, is studied for both laminar and

turbulent flow regimes. Transient response of internal fluid pressure is also modelled and analyzed. The oscillatory

character of the internal pressure is linked with characteristics of the fluid and characteristics of the network.

& 2009 Elsevier Ltd. All rights reserved.

Keywords: Dendritic flow structures; Tree-shaped flow structures; Laminar; Turbulent; Oscillatory flow; Constructal design
1. Introduction

Dendritic (tree-shaped) flow structures play a basic role in animate and inanimate systems (Bejan, 2000; McCulloh

et al., 2003; Reis et al., 2004). The study of these structures, though dating back to the early 20th century (Hess, 1914;

Murray, 1926), is still of great interest due to their widespread applications in engineering, geophysics and physiology.

During the first half of the twentieth century, Hess (1914) and Murray (1926) analyzed the distribution of blood vessel

sizes of the circulatory system. The relationship known in physiology as the Hess–Murray law describes the optimal

ratios of duct diameters in a bifurcation (Bejan, 2000; McCulloh et al., 2003). Bejan and co-authors Bejan (2000, 2005)

and Bejan and Lorente (2006, 2007, 2008), based on the constructal law, theoretically investigated fluid flow in networks

by minimizing the hydraulic resistance with the network volume constrained, and they obtained similar relationships to

those reported in the literature (Hess, 1914; Murray, 1926). Besides, they showed that the best flow path that makes the

connection of one point with an infinity of points (line, area or volume) is a network bifurcating on several levels. In

summary, dendritic networks are the constructal design for providing easier flow access between points, areas and

volumes. The evolution of these flow networks is not toward compactness or complexity but toward maximization of

flow access, and is deducible from principle (i.e., the constructal law).

A study based on the constructal law derived the main features of lung architecture. Reis et al. (2004) showed that a

bifurcating series of ducts, with m bifurcations connected to 2m alveoli, is the best lung structure. For humans, they

found m=23, which matches closely the actual number of bifurcations in the human lung. Besides, they predicted that

the ratio of the square of the airway diameter to its length should be constant within a species and is related to the

characteristics of the space allocated to the respiratory process. The interest in dendritic-shaped flow structures is
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spreading through different fields. Dendritic networks for cooling (Wang et al., 2006), applications for single-phase flow

and two-phase flow (Bejan, 2002; Senn and Poulikakos, 2004, Kwak et al., 2009), dendritic-shaped heat and mass

exchangers (Tondeur et al., 2000) and microvascular lab-on-a-chip systems (Lim et al., 2003; Emerson et al., 2006) have

been proposed in the literature. The multi-scale structure of a dendritic flow network was also investigated by Queiros-

Conde et al. (2007). Miguel (2008) studied the pressure in capillary dendritic networks, based on thermodynamics and

geometric description of the network. The development of embedded dendritic vasculatures for smart materials with

volumetric functionalities, such as self-healing and self-cooling, has recently been proposed (Wang et al., 2007; Lee

et al., 2008; Bejan and Lorente, 2008).

In this paper, we study the fluid flow in dendritic networks. We derive analytical expressions for steady and transient

flows, both for laminar and turbulent conditions. An approach is also proposed to describe the transient response of

internal fluid pressure within dendritic structures with deforming walls and transporting fluids with different properties.
2. Dendritic flow structures: geometric and operational parameters

The geometric parameters of a dendritic flow structure are defined in Fig. 1. This network has N branches of ducts,

from level 0 to level n. Each duct branches into m daughter branches at the next level. The ducts are cylindrical

structures of diameter Di, and lengths Li, i=0, 1,y, n. The diameter and length of these ducts are sized relative to one

another, in accordance with Diþ1=Di ¼ aD and Liþ1=Li ¼ aL, where aD and aL are scale factors independent of i (Bejan,

2000; McCulloh et al., 2003; Reis et al., 2004). The relationship between the size of the first duct (level 0) and the size of

ducts at level i is given by

Di

D0
¼ ai

D and
Li

L0
¼ ai

L: ð1Þ

One basic feature of dendritic structures is that pairing, or bifurcation of ducts (dichotomy), is the constructal design

of providing effective flow access (Bejan, 2000; Bejan and Lorente, 2006, 2008). Therefore, m takes a value of 2 (Fig. 1).

If the flow is laminar, the minimization of flow resistance yields the scale factor aD=2�1/3, which in physiology is

known as Hess–Murray law. Moreover, for bifurcations (m=2) the scale factors aL reported in the literature ranges

from 2�1 to 2�1/3 (Bejan, 2000; Bejan and Lorente, 2008). According to Bejan and Lorente (2008) the optimal geometric

ratios of duct lengths and diameters change in the same proportion and the scale factors are equal (aD=aL=2�1/3).

Therefore, the geometric ratio D/L is preserved in going from each duct to its branch. If the flow is turbulent, the

constructal law shows that the optimal scale factors aD and aL are 2�3/7 and 2�1/7, respectively (Bejan, 2000; Bejan and

Lorente, 2008). In this situation the geometric ratio D/L3 is preserved in going from each duct to its branch.
Fig. 1. Dendritic flow structure (N=3; m=2).
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The effective length of the network, L, is L¼
Pn

i ¼ 0

Li and the cross-sectional area, A, and the volume of the network,

V, are, A¼
Pn

i ¼ 0

miasf D2
i and V ¼

Pn
i ¼ 0

miasf D2
i Li, respectively, where m is the number of branches, n the final branching

level and asf is a shape factor (i.e., p/4). Therefore, we obtain

L¼L0
1�anþ1

L

1�aL

; A¼ asf D2
0

1�ðma2
DÞ

nþ1

1�ma2D
; V ¼ asf D2

0L0
1�ðma2DaLÞ

nþ1

1�ma2
DaL

: ð2Þ

These equations show the effective length, cross-sectional area and volume of the dendritic network in terms of

geometric characteristics of the first duct, number of branches, branching level and scale factors.
3. Fluid flow through dendritic networks

For simplicity, we assume a one-dimensional fully developed flow, and inlet and outlet effects are neglected. The fluid

flow, Q, can be related to the pressure difference, Dp, as

r
L

A

� �
dQ

dt
þ rn

l Re

2

� �
L

D2A

� �
Q¼Dp: ð3Þ

Here t is the time, r the fluid density, n the kinematic fluid viscosity, Re the Reynolds number (=QD/nA) and l the

friction factor. Duct surfaces are rough to varying degrees. In the laminar region (Hagen–Poiseuille flow), roughness

has a negligible effect and l=64/Re. In the region so-called ‘‘complete turbulence rough ducts’’ or ‘‘fully turbulent’’,

the friction factor is independent of Reynolds number and is a function of the relative roughness (Allen et al., 2005;

Goldenfeld, 2006). Whenever Re4900e/D, it turns out that

l¼
1

1:74�2logð2e=DÞ

� �2
;

where e is the size of the roughness elements on the duct surfaces. For a laminar steady flow, substituting l into Eq. (3)

yields

Dp

rnQ

� �
1

¼
32L0

asfD4
0

1�ma4
D;la
�1
L;l

1�ðma4
D;la
�1
L;l Þ

nþ1
: ð4Þ

In a similar procedure, the equation for turbulent flow is

Dp

rnQ

� �
t

¼
ReL0

2½1:74�2logð2w=D0Þ�asfD4
0

1�ma5
D;ta
�1
L;t

1�ðma5
D;ta
�1
L;tÞ

nþ1
; ð5Þ

where Re¼Q=ðnasf D0Þ; w¼ eð1�aD;tÞ=ð1�anþ1
D;t Þ; and subscripts l and t mean laminar and turbulent regimes,

respectively. Eqs. (4) and (5) define the resistance of the dendritic structure to fluid flow (Dp/rnQ). Considering that

Dp, L0 and the fluid properties (r,n) are constants, taking the logarithm on both sides of the each equation and

differentiating yields

@Q

Q

� �
Dp;L0 ;r;n

¼ 4
@D0

D0

� �
Dp;L0 ;r;n

for laminar flow;

@Q

Q

� �
Dp;L0 ;r;n

¼
12:7�10logð2w=D0Þ

3:48�4logð2w=D0Þ

@D0

D0

� �
Dp;L0 ;r;n

for turbulent flow: ð6Þ

If Q, L0 and the fluid properties (r,n) are constants, then

@ðDpÞ

Dp

� �
Q;L0 ;r;n

¼�4
@D0

D0

� �
Q;L0 ;r;n

for laminar flow
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@ðDpÞ

Dp

� �
Q;L0 ;r;n

¼�
12:7�10logð2w=D0Þ

1:74�2logð2w=D0Þ

@D0

D0

� �
Q;L0 ;r;n

for turbulent flow ð7Þ

Notice that in the laminar regime, when D0 increases the fluid flow increases four times faster (Dp=const.) and the

pressure difference decreases by a factor similar to that for the constant fluid flow. For turbulent flows, an increase of

D0 induces a decrease in pressure drop (Q=const.) that is two times greater than the increase of fluid flow

(Dp=const.).

In order to seek a solution to transient flow (Eq. (3)), a realistic scenario is to consider a zero-flow initial condition

(i.e., Q=0 at t=0). Therefore, we find that

Q1 ¼
asf D4

0

32nrL0

1�ðma4
D;la
�1
L;l Þ

nþ1

1�ma4
D;la
�1
L;l

Dp 1�exp �
32

D2
0

ð1�ma4
D;la
�1
L;l Þð1�ðma2

D;la
�1
L;l Þ

nþ1
Þ

ð1�ma2
D;la
�1
L;l Þð1�ðma4

D;la
�1
L;l Þ

nþ1
Þ
nt

" #( )
ð8Þ

and

Qt ¼
21=2asf ½1:74�2logð2w=D0Þ�D

5=2
0

ðrL0Þ
1=2

Dp1=2
1�ðma5

D;ta
�1
L;tÞ

nþ1

1�ma5
D;ta
�1
L;t

" #1=2
expð2stÞ�1

1þ expð2stÞ
; ð9Þ

with

s¼
Dp1=2

ð2rL0D0Þ
1=2
½1:74�2logð2w=D0Þ�

1�ma5
D;ta
�1
L;t

1�ðma5
D;ta
�1
L;tÞ

nþ1

" #1=2
1�ðma2

D;ta
�1
L;tÞ

nþ1

1�ma2
D;ta
�1
L;t

:

In conclusion, Eqs. (8) and (9), describe the transient fluid flow within dendritic structures under laminar and

turbulent regimes, respectively.

4. Transient variation of pressure within the network

We now turn our attention to the pressure within the dendritic flow structure. The equation of mass conservation for

fluid in the dendritic network is

dðVrÞ
dt
¼ rQ ð10Þ

Consider that the wall of the ducts deforms to an extent that depends on the magnitude of pressure exerted to drive

the fluid flow. For simplicity, we assume that the duct deformation can be obtained from (V�V0)/V0=Z(p�p0) where

V0 is the mean volume of the dendritic flow structure, p0 the mean pressure and Z the flexibility coefficient of the duct

wall. If the fluid is considered to be a compressible medium, a state equation is required. For polytropic expansion or

compression of ideal gas with constant heat capacity, the state equation can be written as r=r0(p/p0)
1/b, where b is the

polytropic index ranging from 1 (isothermal) to 1.4 (isentropic gas expansion/compression). When the flow is laminar,

substituting Eq. (10) into Eq. (3) yields

c1;l
d2pl

dt2
þ c2;l

dpl

dt

dpl

dt
þ c3;l

dpl

dt
þ pl ¼ p0; ð11Þ

where

c1;l ¼ rL2
0

1�ma2
D;la
�1
L;l

1�ma2D;laL;l

 !
1�ðma2

D;laL;lÞ
nþ1

1�ðma2
D;la
�1
L;l Þ

nþ1

" #
Z 1þ

1

b

� �
þ

1�Zp0

pl

� �
;

c2;l ¼ rL2
0

1�ma2
D;la
�1
L;l

1�ma2D;laL;l

 !
1�ðma2

D;laL;lÞ
nþ1

1�ðma2
D;la
�1
L;l Þ

nþ1

" #
Zp0�1

p2l

� �
;

c3;l ¼
32rL2

0n
D2

0

1�ma4
D;la
�1
L;l

1�ma2
D;laL;l

 !
1�ðma2

D;laL;lÞ
nþ1

1�ðma4
D;la
�1
L;l Þ

nþ1

" #
Zþ

1þ Zpl�Zp0

bpl

� �
:

Similarly, we conclude that the fluid pressure within a network of rough ducts in the turbulent flow regime is

c1;t
d2pt

dt2
þ c2;t

dpt

dt

dpt

dt
þ pt ¼ p0; ð12Þ
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where

c1;t ¼ rL2
0

1�ma2
D;ta
�1
L;t

1�ma2
D;taL;t

 !
1�ðma2

D;taL;tÞ
nþ1

1�ðma2
D;ta
�1
L;tÞ

nþ1

" #
Z 1þ

1

b

� �
þ
1�Zp0

pt

� �
;

c2;t ¼ rL2
0

1�ma2
D;ta
�1
L;t

1�ma2
D;taL;t

 !
1�ðma2

D;taL;tÞ
nþ1

1�ðma2
D;ta
�1
L;tÞ

nþ1

" #
Zp0�1

p2t

� �

þ
rL3

0

2c2t D0

1�ma5D;ta
�1
L;t

1�ma2
D;taD;t

 !
1�ðma2

D;taL;tÞ
nþ1

1�ðma5
D;ta
�1
L;tÞ

nþ1

" #
Zþ

1þ Zpt�Zp0

bpt

� �
:

and ct ¼ ½1:74�2logð2w=D0Þ�:

Eqs. (11) and (12) describe the transient response of pressure variation within the network. The importance of these

equations lies in the fact that both equations are similar to the one governing a damped harmonic oscillator. As the

‘‘damping factor’’ is greater than zero the system may or may not oscillate, depending on the relation between this

factor and natural frequency. Eqs. (11) and (12) can not only be used to estimate the transient response of the internal

pressure but also to obtain geometric parameters of the network if they are unknown.
5. Final remarks

Fluid flow has been the focus of many studies because of its importance in nature and in science. This study is focused

on the understanding of fluid flow and fluid pressure in a dendritic flow network. An approach is presented by

combining hydrodynamics with a geometric description of the network. First, we examined steady and transient fluid

flows. Finally, an approach was presented whereby sudden transient response of internal pressure variation is shown to

be related with the geometry and mechanical properties of the network, as well as the fluid properties.
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